7.2 Intro to Probability

At the heart of probability theory is \qquad . Rolling a die, flipping a coin, drawing a card and spinning a game board spinner are all examples of \qquad . In a random process no individual event is predictable, even though the long range pattern of many individual events often is predictable.

	Is defined as the ratio of the....	
Probability		

Ranges from \qquad to \qquad .

Types of Probability	
Experimental	
Theoretical	

Calculating Probabilities

When calculating the probability of something happening, the "something" is called an \qquad and the probability of the event happening is written \qquad .

Ex. 1a) The probability of rolling a 3 on a die would be written \qquad .

Ex. 1b) The probability of winning the lottery would be written \qquad .

Probabilities are always expressed as \qquad . The probability of an event that is certain to happen is \qquad while the probability of an impossible event is \qquad .

To calculate a probability, you count the \qquad and divide this number by the total \qquad .

Probability of an event: $P(E)=$

Example of Theoretical Probability

Ex. 2) A bag contains 4 blue marbles, 6 green marbles and 3 yellow marbles. A marble is drawn at random from the bag.
a) What's the probability of drawing a green marble?
b) What's the probability of drawing a yellow marble?
c) What's the probability of drawing a green OR yellow marble?

Example of Experimental Probability

Ex. 3) Suppose a study of car accidents and drivers who use mobile phones produced the following data:

	Had a car accident in the last year	Did not have a car accident in the last year	Totals
Driver using mobile phone	45	280	325
Driver not using mobile phone	25	405	430
Totals	70	685	755

This type of table is called a \qquad
The total number of people in the sample is \qquad . The row totals are \qquad and \qquad .
The column totals are \qquad and \qquad . Notice that $325+430=$ \qquad and $70+685=$ \qquad .

Example. Calculate the following probabilities using the table above:
a) $\mathrm{P}($ a driver is a mobile phone user $)=$
b) $\mathrm{P}(\mathrm{a}$ driver had no accident in the last year $)=$
c) $P($ a driver using a mobile phone had no accident in the last year $)=$

Practice: Nine pieces of paper with the numbers $1,2,2,3,4,4,5,6$, and 6 printed on them are placed in a bag. A student chooses one without looking...
a) What is the probability of choosing a number 1 ?
b) What is the probability of choosing a number 4 ?
c) What is the probability of choosing an odd number?
d) What is the probability of choosing an odd number or a 6 ?

Practice. The following (incomplete) table shows a random sample of 100 hikers and the areas of hiking they prefer:

	Coastline	Near lakes and streams	On mountain peaks	Totals
Male	18	16		45
Female				14
r Totals		41		55

a) What is the probability that a hiker is a female?
b) What's the probability that a coastline hiker is a female?
c) What's the probability a male hiker prefers to hike on mountain peaks?

