7.6: Pascal's Triangle and the Binomial Distribution

Example) A basketball player has a 65% chance of making a 3-point shot. They take five 3-point shots. Complete the distribution table to determine the probability that the play makes $0,1,2,3,4$, or all 5 shots.
\qquad
$\mathrm{n}=$
$\mathrm{p}=$ \qquad
$\mathrm{q}=$ \qquad
$P(X=k)=$

\# shots made	0	1	2	3	4	5
${ }_{5} C_{k}$						

What is the probability that the player makes exactly three out of five 3-pointers?

What is the probability that the player makes at least 3,3 -pointers?

Example) A surfer has a 27% chance of riding a wave each time they paddle out and attempt to stand. The surfer makes 6 attempts to ride a wave. Complete the distribution table below to determine the probability that the surfer catches an even number of waves.
\qquad $\mathrm{p}=$ \qquad

$$
q=
$$

\qquad
$P(X=k)=$

\# of waves	0	1	2	3	4	5	6
${ }_{6} \mathrm{C}_{\mathrm{k}}$							

