Normal Cumulative Density Function

NORMAL FLOAT AUTO REAL DEGREE MP
normalcdf
lower: 1800
upper: 2100
n:1500
o:300
Paste

Normalcdf(lowerbound,upperbound, μ, σ)

1. Thinking back to the SAT data with mean of about 1500 and standard deviation of about 300 .
a) What proportion of the scores are between 1800 and 2100 ?

b) What proportion of the scores are between 1200 and 1800 ?

2. One of the most commonly used IQ scales is the Wechsler IQ scale, the scores of which are normally distributed with a mean of 100 and standard deviation of 15 . Mensa is an organization for people with high IQs; you need an IQ of 130 or higher to become a member.

What proportion of the population can be admitted to Mensa?

$$
\begin{aligned}
& \bar{x}=100 \\
& s=15
\end{aligned}
$$

Source: Rodrigo de la Jara, IQ Basics, http://www.iqcomparisonsite.com/IQBasics.aspx, 3/17/2009.

3. The Standard Normal Distribution is a normal distribution with a mean of 0 and standard deviation of 1 . Use Normalcdf to find out what proportion of data of the Standard Normal Distribution are: [Show what you typed in your calculator as well as your answer as a percent.]
a) within one standard deviation of the mean.

$$
\text { normalcdf }(-1,1,0,1)=.6827
$$

b) within two standard deviations of the mean.

$$
\text { normalcdf }(-2,2,0,1)=.9545
$$

normalcaf $(-3,3,0,1)=.9973$
4. A Nielsen study about cell phone usage by teenagers reported that the average number of text messages per month was 1,742 . If the results were normally distributed and the standard deviation of number of text messages per month was 200 , what portion:
a) sent between 1,542 and 1,942 messages?

$$
\begin{aligned}
& \bar{x}=1742 \\
& s=200
\end{aligned}
$$

normalcof $(1572,19412,1942,200)$

$$
=.6827
$$

b) sent between 1,000 and 2,000 message?

normalcdf $(1000,2003,1742,200)$

$$
=.9014
$$

c) sent fewer than 1,500 messages?

normalcdf (- た99, $1500,1742,200)$

$$
=.1131
$$

d) sent more than 2,000 messages?

$$
\text { normalcdf }(2000,5999,1742,200)
$$

http://www.nypost.com/seven/01112009/news/nationalnews/this kids a text maniac 149614.htm, 3/17/2009.
5. You get back an exam and your teacher says that the grades for all the sections were approximately normally distributed. If you got a z-score of 2.1 , you did better than what proportion of the students taking the test?

$$
\begin{aligned}
& \bar{x}=0 \\
& s=1 \\
& \text { normalcdf }(-\sqrt{2} 99,2.1,0,1) \\
& =.9821
\end{aligned}
$$

