Problem Set 5.4
Rewrite the equation in exponential form.
1] $\log _{7} 49=2$
2] $\log _{5} 125=3$
3] $\log _{4} \frac{1}{4}=-1$
4] $\log _{2} 16=4$
5] $\log _{16} 4=\frac{1}{2}$
6] $\log _{3} \frac{1}{9}=-2$

Rewrite the equation in logarithmic form.
7] $13^{2}=169$
8] $9^{3 / 2}=27$
9] $4^{-3}=\frac{1}{64}$
$10] 10^{-3}=0.001$
11] $64^{\frac{1}{2}}=8$
12] $9^{-2}=\frac{1}{81}$
13] $12^{2}=144$
14] $\left(\frac{1}{12}\right)^{2}=\frac{1}{144}$

Evaluate the logarithm without using a calculator. Show work to support your answer.

15$] \log _{9} 81=$	$16] \log _{27} 3=$	$17] \log _{4} 32=$
18$] \log _{8} 1=$	$19] \ln e^{4}=$	$20] \log _{8} 4=$
21$] \log _{3} \frac{1}{3}=$	$22] \log 1000=$	$23] \log _{\frac{1}{2}} 128=$
24$] \log _{4} 2=$	$25] \log _{25} 125=$	$26] \log _{3} \frac{1}{243}=$
$27 \log _{4} 64=$	$28] \log _{64} 4=$	$29] \log _{6} \frac{1}{216}=$

30) Graph the logarithmic functions. List at least 2 points on the graph of $f(x)$. List the domain, range, and asymptotes as they apply.
a) $\mathrm{f}(\mathrm{x})=\log _{5} x$

b) $f(x)=\log _{3}(x+9)-5$

31 - 33] Use the definition of the logarithmic function to solve for the value of x.
31. (a) $\log _{5} x=4$
(b) $\log _{10} 0.1=x$
32. (a) $\log _{4} 2=x$
(b) $\log _{4} x=2$
33. (a) $\log _{x} 1000=3$
(b) $\log _{x} 25=2$

34-35] Use the Change of Base Formula and a calculator to evaluate the logarithm, correct to six decimal places. Use either natural or common logarithms.
34. $\log _{2} 5$
35. $\log _{5} 2$

