\qquad
1.) Give the EXPLICIT formula for an arithmetic sequence where $a_{14}=10$ and $a_{18}=66$. Then find a_{237}.
2.) Find S_{47} for the sequence below.
3.) Evaluate $\sum_{n=1}^{42} 3 n-4$. Box your final answer.
$\{13,21,29,37,45, \ldots\}$
4.) Write the sequence in recursive and explicit notation.
a) $\{16,-8,4,-2,1, \ldots\}$
b) $\{135,90,60,40, \ldots\}$

Recursive: \qquad Recursive: \qquad

Explicit: \qquad Explicit: \qquad
5.) Write the series in sigma notation.
$2+10+50+250+\ldots+31250$
6.) Write the series in sigma notation.
$1+9+17+25+33+\ldots+513$
7.) Write the EXPLICIT formula for the geometric sequence such that $\mathrm{a}_{6}=30.375$ and $\mathrm{a}_{11}=230.66$.
8.) What term number is 1128 in the arithmetic sequence $8,12,16, \ldots, 1128, \ldots$?
9.) An investment of $\$ 1200$ increases by 6.3% every year. Write an explicit formula that describes the value of the investment each year where a_{1} represents the initial value. How much is the investment worth after 8 years?
10.) Evaluate the sums.
a) $\sum_{n=1}^{17} 6 n-2$
b) $\sum_{n=0}^{5} n^{3}-n^{2}$
c) $\sum_{k=1}^{3} \frac{5}{k+3}$
d) $\sum_{n=8}^{72} 54+12 n$

